Southern York County School District Instructional Plan

Name:	Dates: Rotating Basis
Course/Subject: Science, Grade 3	Unit Plan: Earth Materials

Stage 1 - Desired Results

PA Standard(s)/Assessment Anchors Addressed: 3.1.4.A, 3.1.4.B, 3.1.4.C, 3.1.4.D, 3.2.4.B, 3.2.4.C, 3.4.4.A, 3.5.4.B, 3.7.4.A, 3.7.4.B

Reference: S4.A.2.1 Apply skills necessary to conduct an experiment or design a solution to solve a problem.

Reference: S4.A.2.2 Identify appropriate instruments for a specific task and describe the information the instrument can provide.

Reference: S4.A.3.3 Identify and make observations about patterns that regularly occur and reoccur in nature.

Reference: S4.C.1.1 Describe observable physical properties of matter. Reference: S4.D.1.2 Identify the types and uses of Earth's resources.

Understanding(s):

Students will understand . . .

- Earth materials have properties that can be observed and described with terms such as color, shape, and texture.
- 2. Rocks are earth materials composed of a mixture of one or more minerals.
- A mineral is a basic earth material that cannot be physically broken down any further.
- Some materials, such as salt and alum, dissolve when they are mixed with water, but re-form when the water evaporates.
- 5. Hardness, a mineral property, is the resistance of a mineral to being scratched.
- 6. Different minerals have different properties.
- Crystal residue from evaporation can provide evidence that calcite is an ingredient in a rock.
- 8. A unique property of calcite is its reaction with cold acid.

Essential Question(s):

- How can a fingernail, a penny, and a paper clip help determine hardness?
- What materials make up the Earth and how can they be described?
- What makes a rock a rock?
- To what extent can the minerals that make up rocks be identified and separated?
- How can the knowledge of the Earth's materials and minerals be helpful to man?

Learning Objectives:

Students will know . . .

- Rocks have many properties, including shape, size, color, and texture.
- Geologists use rock properties to help identify different rocks.
- Some dimensions of rocks can be measured and compared.
- Rocks are made of minerals; minerals are made of only one ingredient.
- Some ingredients can be identified by breaking rocks apart.
- Water can be used to separate ingredients; some break into smaller

Students will be able to:

- Make mock rocks and record observations, while comparing the properties of mock rocks to those of real rocks.
- Separate mock rock materials, using a geologist's pick and water in a vial.
- Evaporate mock rock water solution to determine any future ingredients (salt crystals).
- Investigate four unknown minerals through recording the visible properties.
- Use paper clips, pennies, and

- pieces, and some dissolve.
- A mineral is a basic earth material that cannot be broken down into smaller pieces.
- It is usually necessary to know several properties of a mineral to identify it.
- Hardness is a mineral property the resistance to being scratched.
- Minerals can be put in order by hardness.
- A harder object always scratches a softer one.
- Calcite is one of the most common minerals on earth.
- Calcite is the only mineral that bubbles when it comes in contact with cold acid.
- More than one test may be needed to provide conclusive evidence.
- Evaporation is a technique used to separate liquid from solid parts of a mixture (review).
- Crystal patterns can help us identify minerals.
- Granite is a rock made up of minerals, including feldspar, hornblende, mica, and quartz.

- fingernails to discover the hardness of unknown minerals.
- Identify and order four minerals according to their hardness results of a scratch test.
- Place calcite in vinegar to observe a bubbling and fizzing effect as a property of the mineral.
- Search for evidence of calcite as an ingredient in several rock samples.
- Evaporate the calcite mixture to discover a white needlelike crystal and a powdery substance as evidence of calcite as an ingredient.
- Sort a set of earth materials to find a rock, minerals, and granite, through a variety of property tests.
- Explain why knowledge of the Earth's materials and minerals can be helpful.

Name:	Dates: Rotating Basis
Course/Subject: Science, Grade 3	Unit Plan 2: Human Body

Stage 1 - Desired Results

PA Standard(s)/Assessment Anchors Addressed: 3.1.4.A, 3.1.4.B, 3.1.4.D, 3.2.4.B, 3.2.4.C, 3.3.4.B, 3.3.4.C, 3.3.4.D, 3.7.4.B

Reference: S4.A.2.1 Apply skills necessary to conduct an experiment or design a solution to solve a problem.

Reference: S4.A.3.2 Use models to illustrate simple concepts and compare the models to what they represent.

Reference: S4.A.3.3 Identify and make observations about patterns that regularly occur and reoccur in nature.

Reference: S4.A.3.1 Identify systems and describe relationships among parts of a familiar system (e.g., digestive system, simple machines, water cycle).

Reference: S4.B.1.1 Identify and describe similarities and differences between living things and their life processes.

Reference: S4.B.2.1 Identify and explain how adaptations help organisms to survive.

Reference: S4.B.2.2 Identify that characteristics are inherited and, thus, offspring closely resemble their parents.

Reference: S4.B.3.1 Identify and describe living and nonliving things in the environment and their interaction.

Understanding(s): Essential Question(s):

Students will understand . . .

- A human body can move in many ways. Movements are aided and limited by bone and joint structures.
- 2. Bones have different structure designed to form the three major functions in the human body: support, protection, and locomotion.
- 3. The human body has an articulated skeleton ready for action.
- 4. The main function of muscles is to provide movement, coordination and structure for the body.
- 5. The action of bones, muscles, and central nervous system working together is called coordination.
- 6. A stimulus is an event that triggers a response. It is often information received through the senses.
- 7. A response is a reaction to a stimulus.

- How does your body move?
- What are the functions of the bones in the skeleton and how do they work together?
- In what ways are the skeletons of a rodent and a human similar?
- To what extent are all bones important in creating everyday activities?
- To what extent are all the joints in the human skeleton the same or different?
- How are leg bones from different animals similar? How are they different?
- What is the function of muscles and how do they work
- Why doesn't it take the same amount of time for hands and feet to respond to a visual stimulus?
- To what extent does practice make a difference in response time?
- How long does it take to respond to a visual stimulus?

Name:	Dates: Rotating Basis
Course/Subject: Science, Grade 3	Unit Plan 3: Physics of Sound

Stage 1 - Desired Results

PA Standard(s)/Assessment Anchors Addressed:

Assessment Anchors:

S4.A.1.1 Identify and explain the application of scientific, environmental, or technological knowledge to possible solutions to problems.

Reference: 3.2.4.A, 3.2.4.C, 3.8.4.C

S4.A.2.1 Apply skills necessary to conduct an experiment or design a solution to solve a problem.

Reference: 3.2.4.C, 3.2.4.D

S4.A.2.2 Identify appropriate instruments for a specific task and describe the information the instrument can provide.

Reference: 3.7.4.A, 3.7.4.B

S4.A.3.2 Use models to illustrate simple concepts and compare the models to what they represent.

Reference: 3.1.4.B, 4.3.4.C

S4.C.1.1 Describe observable physical properties of matter.

Reference: 3.4.4.A, 3.2.4.B

S4.C.2.1 Recognize basic energy types and sources, or describe how energy can be changed from one form to another.

Reference: 3.4.4.B, 3.4.4.C

Understanding(s): Essential Question(s):

Students will understand . . .

- Sound is created by vibration that originates as a source and travels through a medium to get to a receiver.
- 2. Changes in the vibration level determine the volume and pitch of sound.
- 3. Sounds have identifiable properties and convey information.
- 4. Sound travels through solids, liquids, and gases.
- 5. The medium that sound passes through affects its volume and the distance over which it can be heard.

- What are the properties of sound?
- How can sound be used for communication?
- How are sounds made and is pitch and volume changed?
- To what extent is sound affected when it travels through different medium?
- How can pitch, volume, and the distance a sound can travel be modified or enhanced?

Learning Objectives: Students will know . . .

- The characteristics and properties of different sounds.
- A variety of sound sources and receivers.
- Sound originates from vibrating sources.
- How high-, low-, and medium-pitched sounds are created.
- Scientific thinking processes to conduct investigations and build explanations: observing, communicating, comparing, and organizing.
- Sound travels through three states of matter: solid, liquid, and gas.
- The outer ear is designed to receive sounds.
- Pitch can be changed by changing the length or tension of the object vibrating at the sound source.
- Ears are designed to gather sound energy.
- Several variables affect pitch, including size (length) and tension of the vibrating object at the sounds source.
- How volume, distance, and pitch can be controlled.
- Pitch is how high or low a sound is.
- Differences in pitch are caused by differences in the rate at which objects vibrate?

Students will be able to:

- Discriminate sounds to gain information.
- Look for vibrations at the sound source, identify sound receivers, and compare sound volume to vibration intensity.
- Explain how different vibrations produce varied pitches of sounds.
- Observe and compare how the length of a vibrating sound source affects pitch.
- Observe and compare what happens when the tension applied to a sound source changes.
- Compare the shape of a megaphone and outer ears for directing sound through air.
- Compare the results of sound traveling through three states of matter: solids, liquids, and gases.
- Compare the pitch of a sound to the physical properties of the sound source.

Name:	Dates: Rotating Basis
Course/Subject: Science, Grade 3	Unit Plan 4: Ideas and Inventions

Stage 1 - Desired Results

PA Standard(s)/Assessment Anchors Addressed:

S4.A.2.1 Apply skills necessary to conduct an experiment or design a solution to solve a problem.

Reference: 3.2.4.C, 3.2.4.D

S4.A.2.2 Identify appropriate instruments for a specific task and describe the information the instrument can provide.

Reference: 3.7.4.A, 3.7.4.B

S4.A.3.3 Identify and make observations about patterns that regularly occur and reoccur in nature.

Reference: 3.1.4.C, 3.2.4.B

S4.B.2.2 Identify that characteristics are inherited and, thus, offspring closely resemble their parents.

Reference: 3.3.4.C, 4.7.4.A, 4.7.4.C

S4.C.1.1 Describe observable physical properties of matter.

Reference: 3.4.4.A, 3.2.4.B

Understanding(s):

Students will understand . . .

- 1. Texture refers to the surface features of a material.
- 2. Pattern is a design or arrangement of objects.
- Scientists are able to study the textures and patterns of various objects such as leaves, fingerprint, and paper through various techniques.
- Chromotography refers to a physical method used to separate and analyze mixtures.
- 5. Symmetry is an arrangement in which the parts on opposite sides of a center line are the same.
- 6. Mirror images are the result of light reflected from a surface.

Essential Question(s):

- To what extent can the rubbing technique be used to learn more about objects?
- How do fingerprints act as your signature?
- To what are mirrors used for various applications in our daily lives?

Learning Objectives:

Students will know . . .

- The use of the rubbing technique allows for observation of things not easily seen.
- Veins transport materials in a leaf.
- Leaf-venation patterns can be organized into three types: parallel, palmate, and pinnate.
- Carbon printing is a technique used to make fine textures visible.
- No two people have the same fingerprints.
- Chromatography uses water to carry pigments from one place to another.
- The process of water moving through paper is called wicking.
- Light travels in straight lines.

Students will be able to:

- Use crayon and pencil rubbing to reveal patterns that are not readily visible on materials.
- Apply their rubbing techniques to make leaf rubbings.
- Use rubbings to identify and categorize leaves by type of veins.
- Invent an application for rubbing techniques.
- Make carbon prints of skin texture and fingertips.
- Classify fingerprints into the three basic patterns: whorl, loop, and arch.
- Use the carbon-printing technique to solve a mystery.
- Invent an application for the carbon

- An image produced by something that reflects, such as a mirror, is always reversed right to left.
- Mirrors can be used to determine symmetry in objects.
- How to record features of textured objects by making rubbings.
- Scientific thinking processes to conduct investigations and build explanations: observing, communicating, comparing, and organizing.
- Carbon-printing is used to make fine textures visible.
- The characteristics of the three basic patterns of fingerprints: whorl, arch, and loop.
- How to invent an application for carbon printing.
- Paper chromatography is used to observe things not easily seen.
- Paper chromatography is used to reveal pigments in watercolor inks.
- How to compare chromatograms made with a variety of materials.
- How to discover lines of symmetry in familiar and unfamiliar shapes.
- How to use mirrors to manipulate light and images.

- printing technique.
- Use paper chromatography to separate and see pigments in watercolor inks.
- Conduct an investigation to determine the tool used to produce the pattern presented in a mystery chromatogram.
- Invent ways to use chromatography and try to answer more advanced questions about the behavior of pigments and inks.
- Use chromatography to solve a mystery.
- Invent an application for chromatography.
- Use mirrors to manipulate light and images, including reversals and lines of symmetry in geometric shapes and letters of the alphabet.
- Explore how to reflect images from one mirror to another and apply this knowledge by assembling a periscope.
- Investigate how to create multiple images by arranging two or more mirrors so that they reflect off one another.
- Invent ways to use mirrors to produce useful and aesthetically pleasing products such as a kaleidoscope.
- Identify an idea they would like to investigate in greater detail and to share their results with the rest of the class in a formal presentation.